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Abstract

_ested concatenated coded 8-PSE modulation schemes are proposed to achieve good error

performance, large coding gains, and high spectral eF_ciency w_th reduced decoch'ng complex/ty.

In the concatenation, Reed-Solomon (RS) codes, including the NASA standard (255 , 223) RS

code, are used as the outer codes and multi-dimensional trellis 8-PSK codes are used as the

inner codes. The inner codes are constructed from convolutional codes w/th good free branch

distances and multidimensional 8-PSK cose_ codes through concatenation. These schemes are

ana/yzed and upper bounds on their error performances are derived. Analytical and simulation

results show that these schemes perform e.'_remely well and achieve impressive coding gains

over uncoded reference systems for bit-error-rates below 10 -3. These schemes achieve large

coding gMns with reduced decoding complexly.





I. Introduction

Since the publication of the celebrated paper by Ungerboeck[1] on coded modulation, there

has been a boom of research and applications in this area. Over the last ten years, researchers

have proposed various techniques for constructing both trellis and block modulation codes. Even

though the techniques of construction are different, a common point to be noted is that the

codes constructed by these methods require large decoding complexity to achieve large coding

gains. The large decoding complexity of these codes make them impractical for apl3lications

in high-speed data communications where large coding gains and high reliability are required.

Concatenated coded modulation was proposed as a solution to this problem by Deng and

Costello[2,3], and Kasami et. al.[4]. In all these papers, Reed-Solomon(RS) outer codes were

concatenated with bandwidth efficient modulation inner codes in a single-level manner. Deng

and Costello used trellis modulation codes as the inner codes, whereas Kasami et. al. used

block modulation codes as the inner codes. It was shown that by properly choosing the inner

codes, large coding gains and high spectral efficiency can be achieved with reduced decoding

complexity.

In this paper, several nested concatenated coded 8-PSK modulation schemes are proposed

to achieve good error performance, large coding gains, and high spectral efficiency

with reduced decoding complexity. In the concatenation, RS codes, including the NASA

standard (255 , 223) RS code, are used as the outer codes and multidimensional trellis 8-PSK

codes are used as the inner codes. The inner codes are constructed from convolutional codes

with good free branch distances and multidimensional 8-PSK coset codes through concatena-

tion[5]. These inner codes achieve the same error performance as the optimal multidimensional

trellis codes constructed by Pietrobon et. al.[6] with less decoding complexity. In the outer

concatenation, an outer code symbol is splitted into two parts for two-level inner code encod-

ing. Three basic nested concatenated schemes with various combinations of outer codes and

inner codes are presented. Upper bounds on the error performance are derived. Analytical and

simulation results show that all the proposed schemes perform extremely well and achieve large

coding gains with reduced decoding complexity. They outperform the concatenated coded

modulation schemes proposed in [2-4].



The organization of this paper is asfollows. In Section2, a simple construction of multidi-

mensionaltrellis 8-PSK inner codesis presented. In Section3, three nestedconcatenatedcoded

8-PSK modulation schemesare described.The analysisof their error performancesis givenin

AppendicesA to D. In Section 4, complexity of the proposedschemesis discussed.

II. k Simple Construction of Multidimensional Trellis 8-PSK

Codes

In this section, a simple construction of multidimensional trellis 8-PSK modulation codes

is presented. The construction is achieved by concatenating a convolutional code of good free

branch distance with a properly chosen multidimensional 8-PSK signal space.

Let S denote the two-dimensional 8-PSK signal constellation with unit energy as shown in

Figure 1, in which each signal point is uniquely labeled with 3 bits, abc, where a is the first

labeling bit and c is the last labeling bit. The labeling is done through signal partitioning

process [1]. It can be shown[l] that: (1) Two signal points with labels different at the first

bit position are at a squared Euclidean distance at least dl -- 0.586 apart; (2) Two signal

points with labels identical at the first bit position but different at the second bit position are

separated by a squared Euclidean distance at least d2 - 2 apart; (3) Two signal points with

labels identical at the first two bit positions but different at the last bit position are at a squared

Euclidean distance d3 -- 4 apart.

Let S '_ denote the set of all m-tuples over S. Since S is a two-dimensional signal space,

then S" is an m x 2-dimensional signal space in which each signal point is a sequence of rn

8-PSK signals. In the construction of multidimensional treMis 8-PSK codes, the signal space is

chosen as a subspace of S m, denoted A0. In this paper, A0 is constructed by the multilevel

coding method proposed by Imai and Hirakawa[7].

Let L _ {abc : a, b, c E GF(2)} be the set of labels for the signal points in the 8-PSK signal

consteMation S. Let A(.) be the mapping which maps the label abc into its corresponding

signal point s in S, i.e., A(abc) = s. Define an addition _+" on the label set L as follows : For

two labels, abc and a'b'c', in L,

abc -b a' b'c' - cL"b"c"
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where a" = aOa', b" = bob', c" =cOc', and • is the modulo-2 addition. With this addition,

L is simply the vector space of all 3-tuples over GF(2). We call L the label space ( or set )

for S.

For 1 < i < 3, let Ai be a binary (m, ki, 6i) linear block code of length m, dimension kl, and

minimum Hamming distance 6i. Let

a = (al,a2, ...,aj, "",am)

b - (bl,b2,-.-,bj,-,b,,)

c = (cl,c2, "..,cj, "",c,_)

be three codewords in Ax, A2, and A3 respectively. We form the following sequence :

A
a * b * c = (alblCl, a2b2c2, "", a,.,,b,.,,c,,,) (2.1)

For 1 _< j _< m, we regard ajbjcj as the label for a signal point s i in the 8-PSK signal set S.

Then a • b • c is simply an m-tuple over the label set L and

A(a. b.c) = (.X(atblcl),A(a2b2c2), ...,A(a,.,b,,,c,.,,))

= ..., (2.2)

is an rn-tuple over the 8-PSK signal set S ( a sequence of m 8-PSK signals ) which is a signal

point in the rn x 2-dimensional signal space Sm.

From codes A1, A2 and A3, we form the following set of m-tuples over the label set L :

AI*A2*Aa_ {a*b*c : nEAt, b6A2, andcEA3} (2.3)

Then At * A2 * A3 is a vector space ( or a linear code ) over L and has 2 kL+k2 +k.. vectors. Hence,

the dimension of At * A2 * A3 is kl + k2 + ha.

Suppose each m-tuple in A1 * A2 * Aa is mapped into an m-tuple over the 8-PSK signal set

S by the mapping A(.) defined in Figure 1. Then we obtain the set of signal points in S":

z_ A(A1 * A2 * A3)A0 --

= {A(a*b*c):aEAt, bEA2, andcEA3} (2.4)
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The set Ao is a subspaceof Sm. This subspace Ao is actually a basic 3-level block 8-PSK

modulation code[7-13]. Based on the labels for the 8-PSK signal points shown in Figure 1, it

can be shown that the minimum squared Euclidean distance ( or the intra-set distance[i])

of Ao is [7-9] :

D[A0] = rain{0.58661, 262, 46a) (2.5)

If Ao is regarded as a block 8-PSK modulation code, each codeword in Ao carries kl -F k2 + k3

information bits. Hence, the spectral efficiency ( or effective rate ) of Ao is

R[Ao] = (kl + k2 + k3)/m bits/signal

If the dimension ( or m ) of Ao is small, Ao can be decoded practically with a soft-decision

optimum decoding scheme. If Ao has a simple trellis diagram with a small number of states

[4,13] Viterbi decoding algorithm can be applied. In the case that Ao has large dimension

or a complex trellis diagram, a multi-stage soft-decision suboptimum decoding can be devised

for decoding Ao based on its multilevel structure [7,11,14,15]. A properly designed multi-

stage soft-decision suboptimum decoding for A0 achieves good error performance with reduced

decoding complexity.

In the following, the subspace A0 of S" will be used as the signal space for constructing

multidimensional trellis 8-PSK codes. Before presenting the code construction, we need to

!

define a subspace of Ao for partitioning A0. For 1 < i < 3, let Bi be an (m, kl, 6_) linear

I I I

subcode of Ai with minimum Hamming distance 6i. Then k i < ki and 8i >_ 61 for 1 _< i _< 3.

Form the following set of m-tuples over the label set L :

BI*B2*B3_{x*y*z : xeB1, y6B_, andz6B3} (2.6)

It is clear that B1 * B2 * Bs is a subcode of AI * A2 * A3 and

A1 = A(B1 * B2 * B3)

is a subspace of Ao = A(A1 * A2 * A3). The minimum squared Euclidean distance ( or the

intra-set distance ) of A1 is

I I

D[A1] = rain{0.58661, 262, 46'3} (2.7)
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Let a, b, c be a vector in A1 * A2 * A3 but not in B1 * B2 * B3. Then

a,b,c + BI*B2*B3

- {a,b,c+x,y,z : x*y*zEBI*BI*B3} (2.8)

is a coset of B1 * B2 */?3 in A1 * A2 * A3 and a • b • c is called the coset representative. It

is clear that

A(a • b • c + B1 * B2 * B3)

t I !

is a coset of A1 = A(Bz * B2 * B3) in Ao = A(A1 * A2 * A3). Let n = k_ - k_ + k2 - k 2 :k k3 -- k 3.

There are 2" cosets of B1 * B2 * B3 in A1 * A2 * A3. Consequently, there are 2" cosets of AI

in A0. These 2" cosets of A1 form a partition of A0. Let A0/A1 denote the set of cosets in

A0 modulo A1. A0/A1 is called a coset code. The minimum squared Euclidean distance ( or

inter-set distance ) between two cosets in Ao/A1 is O[A0].

In the following, we will use Ao, A1 and A0/A1 for constructing multidimensional trellis

8-PSK modulation codes. Let C be an (n, k, v) feedforward convolutional code of constraint

length u. A code sequence in C is a sequence of branches, each branch consists of n coded

bits and contains k information bits. A:ll the code sequences form a trellis diagram and a code

sequence is represented by a path in the trellis [16]. The branch distance between two code

sequences, u and v, in C, denoted db(u , v), is defined as the number of branches where u and

v differ. The minimum free branch distance of C is defined as [5]

m n{db(u v) : u,v e c and u # v} (2.9)dB_free =

The proposed construction of multidimensional-trellis 8-PSK codes is accomplished by con-

catenating an (n, k, v) convolutional outer code C of good free branch distance and a properly

chosen m × 2-dimensional 8-PSK signal space A0 as shown in Figure 2. During each enco-

ding interval, a message of k + r information bits is applied to the input of the encoder where

I ! t

r = k z + k2 + k s. This message is divided into two parts, a k-bit message sub-block and a

r-bit message sub-block. At the first step of encoding, the k-bit message sub-block is encoded

into an n-bit code block based on the (n, k, v) convolutional outer code. This code block then

selects a coset fl from the coset code A0/At which appears at one of the inputs of the signal

point selector. At the second step of encoding, the r-bit message sub-block selects an m x 2-

dimensional signal point from the coset f_. Hence the output of the coset selector is a sequence



of cosetsfrom the cosetcode A0/A1, and the output of the signalpoint selectoris a sequence

of signal points from the rn x 2-dimensional signal space A0. All the possible code sequences

at the output of the overall encoder form an ra x 2-dimensional trellis 8-PSK modulation code.

The trellis structure of this modulation code is identical to that of the convolutional code C.

In the code trellis, two adjacent states are connected by 2r parallel branches which correspond

to the 2 r signal points in a coset of Ao/A1. Since k + r information bits axe encoded into a

sequence of ra 8-PSK signals, the spectral efficiency of the code is

rl = k + r/ra bits/signal

Let Dfree denote the minimum free squared Euclidean distance of the code. Then Dfree is

lower bounded as follows [5] :

Dfree _> min{D[A1], D[A0]- dB_free} (2.10)

where D[A0] and D[A1] are the minimum squared Euclidean distances of the signal spaces A0

and A1 respectively, and dB_free is the minimum free branch distance of the convolutional code

C.

The above concatenation approach provides a systematic method for constructing multi-

dimensional trellis 8-PSK modulation code. It definitely can be generalized for constructing

multidimensional trellis codes over any signal constellation other than 8-PSK. Multilevel con-

catenation and multilevel partitioning of a multidimensional signal space A0 can be used for con-

structing various classes of multilevel multidimensional trellis modulation codes. From (2.10),

we see that the minimum squared Euclidean distance Dfree of a multidimensional trellis 8-PSK

code described in this section depends on the minimum free branch distance dB_free of the

convolutional component code. It is desired to use a convolutional code of a given memory

order with the largest possible minimum free branch distance. Construction of convolutional

codes with good minimum free branch distance can be carried out in the same manner as that

of convolutional codes with good minimum free distance. Optimal codes in terms of dB_free for

rates, 1/2, 2/3, and 3/4, have been constructed [5] and a short list is given in Table 1. Detailed

construction of the multi-dimensional codes with error-analysis is given in [5]. An important

point to note is that codes optimum in terms of minimum free branch distance may not be

optimum in terms of the minimum free Hamming distance and vice versa.

6

................. _" " .............................................................. - _...... i: - 7_'Y" L......... "_'".7_TS _'T7"'Z'--'_Z-'_--- .?Y.Y



Example I: Suppose we want to construct a 2 x 2-dimensional trellis 8-PSK modulation

code with spectral efficiency 2 bits per signal and minimum free squared Euclidean distance 4.

For signal space construction, we choose the following three binary codes : A1 -- (2, 1, 2), A2 -

(2,2,1), and A3 = (2,2,1). Then, A0 = A((2,1,2) * (2,2,1) * (2,2,1)) is a 2 x 2-dimensional

8-PSK signal space with 32 signal points, each signal point consists of two 8-PSK signals. The

minimum squared Euclidean distance of Ao is D[Ao] = min{0.586 x 2, 2 x 1, 4 x I} = 1.172.

To partition A0, we choose the following binary codes: B1 = (2, 0, cx_), B2 = (2, 1, 2), and

B3 = (2,2,1) with B1 C A1, B_ C A_, and B3 -'- As. Then, AI -- A((2,0,_),(2, 1,2)*(2,2, 1))

is a subspace of A0 consisting of 8 signal points. The minimum squared Euclidean distance of

A1 is 4. The coset code A0/A1 consists of 4 cosets, each coset contains 8 signal points.

A rate-l/2 convolutional code of constraint length v -- 3 and minimum free branch distance

dB_free = 3 is chosen for the construction of the 2 x 2-dimensional trellis 8-PSK code. This

code is generated by the following generator matrix [5] :

G(D) -- (1 + D2,D)

and has a 4-state trellis diagram.

The schematic diagram for constructing the desired 2 x 2-dimensional trellis 8-PSK code

is shown in Figure 3. At each time instant, 4 information bits are applied to the input of

the encoder. One information bit is encoded by the convolutional encoder into two coded bits

which select one of the cosets in the coset code A0/A1. The 3 uncoded information bits then

select a signal point from the selected coset. As a" result, four information bits are encoded into

two 8-PSK signals. All the possible signal sequences at the output of the overall encoder form

a 2 x 2-dimensional trellis 8-PSK code. This code has a 4-state trellis diagram in which two

adjacent states are connected by 8 parallel branches and each branch corresponds to a

signal point ( or two 8-PSK signals ) in a coset in A0/A1. The spectral efficiency of the code

is 7/= 2 bits/signal. The minimum free squared Euclidean distance of the code is 4 ( since the

diverging and converging transitions of the convolutional code give a squared Euclidean distance

contribution of 2.0 ). The code achieves a 3dB asymptotic coding gain over the uncoded QPSK

system. Figure 4 shows the bit-error-performance of this code.

7
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III. Concatenated Coded 8-PSK Schemes

In this section we will propose three bandwidth efficient concatenated coded modulation

error control schemes for high-speed satellite communications. In these proposed schemes, RS

codes over GF(2 s) with various error correcting capabilities, including the NASA standard

(255,223) RS code, are used as the outer codes, and multidimensional trellis 8-PSK codes

are used as inner codes.

The decoding technique for the proposed codes will be the same as that in [2] and [4], i.e.,

the inner code is decoded first and the estimates passed onto the RS outer code decoder for

hard error correction.

A. Scheme-1

In this scheme, the 2 x 2-dimensional trellis 8-PSK given in Example 1 is used as the inner

code.

The first proposed concatenated TCM scheme is shown in Figure 5. The outer code is a

RS code of length 255 over GF(2S). Each code symbol is an 8-bit byte. The RS outer code is

properly interleaved. Suppose the interleaving depth is m = 5 as shown in Figure 6. Five

RS codewords form an array with 255 columns, each column consisting of 5 bytes. The array

is further encoded based on the trellis inner code and transmitted column by column. Each

8-bit byte in a column is divided into two 4-bit blocks. Each 4-bit block is encoded into two

8-PSK signals based on the trellis inner code. The order of encoding of the ten 4-bit blocks

in a column follows the integer sequence shown in Figure 6.

An upper bound has been derived on the the error performance of the trellis inner code and

is given in Appendix B. The error performance is measured in terms of block ( 4 bits ) error

probability. The code achieves better than 10 -2 block error probability at SNR Eb/No = 5dB.

When this code is concatenated with the NASA standard (255 , 223) RS outer code, the overall

system will achieve a bit-error rate 10 -6 or better at SNR Eb/No -" 5dB.

A decoded sequence of 255 x 10 = 2550 blocks at the output of the inner code decoder

is de-interleaved and rearranged into an array of 5 rows and 255 columns. Each row is then

8



hard-decision decoded based on the R5 outer code.

To reduce the encoding and decoding delay, five pairs of inner code encoder/decoder can be

used. Since the trellis inner code is chosen to have low decoding complexity, the duplication

adds just a little more cost but greatly increases the decoding speed.

The scheme has been analyzed and an upper bound on the bit error probability has been

derived ( Appendix A,B ). Table 2 gives a list of 2 concatenations of 2 RS outer codes over

GF(2 s) and the 2 x 2-dimensional trellis inner code. For each concatenation, the SNRs required

to achieve bit-error probability 10 -s (or 10 -9) and coding gain over an uncoded reference

system of the same spectral efficiency are given. Figures 7-8 show the upper bounds and

the simulation results on the bit error probability for the cases considered in Table 2. The

simulations have been carried out with an interleaving depth of 5. From Table 2 we see that

both concatenations achieve good error performance and large coding gains. The first concate-

nation achieves a bit-error probability 10 -6 at the SNR Eb/No = 5.13 dB, and the performance

curves drops like a waterfall for Eb/No > 5dB. From Figure 7, we see that the coding gains

over the uncoded reference system of the same spectral efficiency [3] at the decoded bit-error-

probabilities, I0 -6 and 10 -9, are 4.92dB and 6.64dB respectively and that over uncoded QPSK

at the decoded bit-error-probabilities, 10 -6 and 10 -9, axe 5.42dB and 7.14dB respectively. The

spectral efficiency of the first concatenation is U - 1.75 bits/symboh Higher spectral efficiency

can be achieved by using a higher rate RS outer code, e.g., either the (255 , 239) RS code or

the (255 , 247) RS code.

B. Scheme-II

In this scheme, a 7 x 2-dimensional 8-PSK signal space A0 is used as the signal set for

the construction of TCM inner codes. This signal space is constructed from three binary

codes of length 7 as follows : Let A1 = (7, 3, 3), A2 = (7, 7, 1), and A3 = (7, 7, 1). Hence A0 =

A((7, 3, 3). (7, 7,1).(7, 7,1)) which consists of 217 points. The (7,3,3) code has been taken from

[6, partition IV]. Each signal point in A0 consists of seven 8-PSK signals. The intra-set distance

of Ao is 1.758. This signal space is partitioned into 8 cosets based on the following subspace :

Let B1 = (7, 1, 7), B2 = (7, 6, 2), and B3 = (7, 7, 1). Hence A_ - A((7, 1, 7) • (7, 6, 2) * (7, 7, 1)).

9
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Each coset in the partition A0/At consists of 214 points. The intra-set distance of each coset of

A0/A1 is 4.0. Furthermore, each coset in Ao/A1 has a 4-state 7-section trellis diagram.

The trellis inner code for the second proposed concatenated TCM schemes is formed from a

rate- 2/3 convolutional code and the signal space Ao through concatenation as shown in Figure

2 with k = 2 and r = 14. At each time instant, 16 information bits ( one block ) are applied at

the input of the trellis inner code encoder. Two information bits are encoded by the rate- 2/3

convolutional encoders into 3 coded bits. These 3 coded bits select a coset from the partition

A0/A1, and then the other 14 information bits select a signal point ( seven 8-PSK signals )

from the selected coset. Hence 16 information bits are encoded into seven 8-PSK signals. All

the signal sequences at the output of the trellis inner code encoder form a TCM code with

spectral efficiency _ = 16/7 = 2.286 bits/symbol. In the trellis diagram of this TCM code,

two adjacent states are connected by 214 parallel branches, each branch corresponding to seven

8-PSK signals.

In the second proposed concatenated TCM scheme, a 4-state, rate- 2/3 convolutional code

is used. The generator matrix of this code is :

The free branch distance of this code is 2 [5] and the overall minimum squared Euclidean

distance of the TCM code is 3.516. An upper bound has been derived for the error performance

of the inner code and is given in Appendix C. The error performance is measured in terms of

block ( 16 bits ) error probability.

The third proposed concatenated TCM scheme is very similar to that shown in Figure 5.

The only difference is that a different inner code is used. In this scheme, a RS outer code

over GF(2 s) is used. The inner code decoding is the soft-decision Viterbi decoding. Since

the parallel branches between two adjacent states have a 4-state 7-section trellis diagram, the

most probable branch can be determined by using the Viterbi decoding algorithm. The

trellis inner code actually has a nested trellis diagram, i.e. trellis within a trellis.

Table 2 gives a list of 2 concatenations of the trellis inner code and 2 RS outer codes over

GF(2S). Both concatenated schemes have spectral efficiency 7/ greater than or equal to 2

10



bits/symbol. An upper bound on the bit error probability has been derived for all the cases

considered, ( Appendix A,C ) and is shown Figures 9-10. The concatenation of the NASA

standard (255 , 223) RS code and the 4-state TCM inner code achieves a bit-error probability

10 -6 at the SNR Eb/No = 6.2dB. From Figure 9 we see that the coding gains over the uncoded

QPSK at the decoded bit-error-probabilities 10 -8 and 10 -9, are 4.35dB and 6.09dB respectively.

We see that the second proposed concatenated TCM scheme achieves higher spectral efficiency

at the expense of higher SNR and decoding complexity.

C. Seheme-III

In this scheme, a 15 x 2-dimensional 8-PSK signa/space Ao is used as the signal set for the

construction of TCM inner code. This signal space is constructed from three binary codes of

length 15 as follows : Using notation of Section 2, let AI = (15, 4, 7), A2 = (15, 14, 2), and As =

(15,15,1). Hence A0 = A((15,4,7) • (15,14,2) * (15,15,1)) which consists of 2SS points. The

(15, 4, 7) code is obtained by removing the first column and the last row of the generator matrix

of the (16, 5, 8) Reed-Muller code. Each signal point in A0 consists of fifteen 8-PSK signals.

The intra-set distance of A0 is 4.102. This signal space is partitioned into 8 cosets based on

the following subspace : Let B1 = (15, 1, 15), B2 = (15, 14,2), and B3 = (15, 15, 1). Hence

A1 = A((15,1,15) • (15,14,2) • (15,15,1)). Each coset in the partition A0/A1 consists of 23°

points. The intra-set distance of each coset of A0/A1 is 4.0.

The trellis inner code for the third proposed concatenated TCM schemes is formed from a

rate- 2/3 convolutiona/code and the signal space A0 through concatenation as shown in Figure

2 with r = 30 and k = 2. At each time instant, $2 information bits ( one block ) are applied at

the input of the trellis inner code encoder. Two information bits are encoded by the rate- 2/3

convolutional encoders into 3 coded bits. These 3 coded bits select a coset from the partition

A0/Ax, and then the other 30 information bits select a signal point ( fifteen 8-PSK signals )

from the selected coset. Hence 32 information bits are encoded into fifteen 8-PSK signals. All

the signal sequences at the output of the trellis inner code encoder form a TCM code with

spectra/efficiency r/= 32/15 = 2.1333 bits/symbol. In the trellis diagram of this TCM code,

two adjacent states are connected by 23° parallel branches, each branch corresponding to fifteen

8-PSK signals.

ii
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In the third proposedconcatenatedTCM scheme,a 4-state code has been consideredfor

the rate- 2/3 convolutional code and the generator matrix is :

G(D) = (I+DD DI+D)I 1

The free branch distance of this code is 2 [5] and the overall minimum squared Euclidean

distance of the TCM code is 4.0.

An upper bound has been derived for the error performance of the inner code and is given in

Appendix D. The error performance is measured in terms of block ( 32 bits ) error probability.

The third proposed concatenated TCM scheme is very similar to that shown in Figure 5.

The only difference is that a different inner code is used. In this scheme, a RS outer code over

GF(2 s) is used. The inner code decoding is a multi-stage suboptimum soft-decision Viterbi

decoding. The suboptimal decoding algorithm reduces the branch decoding complexity of the

rate- 2/3 code from 230 to 2 while maintaining good performance.

Table 2 gives a list of 3 concatenations with 3 RS outer codes. The simulation results listed

in Table 2 have been carried out with _.n interleaving depth of five. An upper bound on the bit

error probability has been derived for all the cases considered, ( Appendix A,D ) and is shown

in Figures 11-13.

III. Complexity of the proposed schemes

The complexity of the proposed schemes will be measured in terms of the number of compu-

tations required for the inner code decoder to produce a decoded estimate of 8 bits ( since the

outer code is over GF(2 s) ). The decoding complexity of the RS code is negligible as compared

to the inner code due to the availability of low complexity decoding algorithms for RS codes

and hence will be ignored.

Let v denote the memory order of the convolutional code used in the inner code and let kin

be the rate of the convolutional code used in the inner code. Then, due to the Viterbi algorithm

alone, the complexity is 2 "+k additions and 2"(2 k - 1) comparisons per block of decoded data.

The branch metric calculation forms an additional complexity and depends upon the particular

inner code chosen. Let us call this complexity CB. Hence the total complexity per block
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(inner code) of decodeddata is : 2 "+k additions + 2"(2 k - 1) comparisons + CB branch metric

computations. If g blocks of the inner code form one symbol of the RS code, then the total

decoding complexity per RS symbol is g times the decoding complexity of one block of the inner

code.

Let us call the complexity associated with the distance calculation between a fixed 8-PSK

signal point and a received point as 1 distance computation.

A. Scheme-I : u = 2 and k = 1.

A1 has a very simple 2 state trellis which can be used to compute the branch metric. This

reduces the branch metric calculation complexity significantly. The trellis for A1 has 2 parallel

transitions per 8-PSK signal. The branch decoding complexity C8 is : (1) Since there are two 8-

PSK points per branch, the distance computation complexity per branch is 16. (2) The Viterbi

decoding for A1 requires 2 additions and 1 comparison to calculate the final survivor. Since

there are 4 cosets, the total complexity is 8 additions and 4 comparisons; and (3) Survivor

calculation for the parallel branch transitions in A1 requires 8 comparisons. ( per block of

decoded data ) Hence CB = 8 additions + 12 comparisons + 16 distance computations. The

total complexity per block of decoded data ( 4 bits ) is 16 additions + 16 comparisons + 16

distance computations. Hence complexity per symbol of the RS code is 32 additions + 32

comparisons + 32 distance computations.

B. Scheme-II : u = 2 and k = 2.

A1 has a 4 state trellis which can be used to compute the branch metric. This reduces

the branch calculation complexity significantly. The trellis for A1 has 2 parallel transitions per

8-PSK signal. The branch decoding complexity CB is : (1) Since there are seven 8-PSK points

per branch, the distance computation complexity per branch is 56. (2) The Viterbi decoding

for A1 requires 44 additions and 23 comparison to calculate the final survivor. Since there are 8

cosets, the total complexity is 352 additions and 184 comparisons; and (3) Survivor calculation

for the parallel branch transitions in A1 requires 28 comparisons. ( per block of decoded data )

i.e., CB = 352 additions + 212 comparisons + 56 distance computations. Therefore, complexity

per RS symbol is 184 additions + 112 comparisons + 28 distance computations.
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C. Scheme-III : v = 2 and k = 2.

The branch decoding complexity is significantly reduced by using the suboptimal soft-

decision decoding algorithm which reduces the number of parallel transitions for calculation

of the coset estimate from 23o to 2. The two parallel transitions arise due to the (15, 1, 15)

code. The branch decoding complexity CB is : (1) There are fifteen 8-PSK points per branch,

hence the distance computation complexity per branch is 120. (2) Estimating the coset repre-

sentative requires finding the survivor of the 2 parallel transitions. This requires 28 adds and

1 compare. Since there are 8 cosets, the total complexity is 224 additions and 8 comparisons.

The suboptimal distance estimates require 90 comparisons; and (3) Estimating the information

bits for the (15, 14, 2) and the (15, 15, 1) code requires 54 additions and 27 comparisons. Recall

that the (15, 14, 2) and the (15, 15, 1) code form a 2-level block modulation code with 2 states.

The trellis for this 2-level modulation code is used to estimate the information bits. i.e., CB =

278 additions + 125 comparisons + 120 distance computations. Therefore, complexity per RS

symbol is 73.5 additions + 34.25 comparisons + 30 distance computations.

IV. Comparison of results with [2], [31 and [4]

The proposed schemes outperform those in [2], [3] and [4] both in terms of coding gain

and decoding complexity.

Consider the first scheme proposed in [4]. This scheme achieves 10 -s bit-error-rate at Eb/No

of 5.61dB and 10 -l° at Eb/No of 6.07dB with a decoding complexity of 4 states. As is shown in

Table 2 and Figure 7, Case 1 of Scheme-I outperforms this particular scheme by almost 0.48dB

at 10 -6 bit-error-rate and by about 0.6dB at 10 -l° bit-error-rate. The decoding complexity

of the first scheme in [4] has a decoding complexity of 26 additions + 29.5 compares + 32

distance computations per symbol of the RS code[4]. This complexity is comparable to the

decoding complexity of Case 1 of the proposed Scheme-I. The second scheme proposed in [4]

has a decoding complexity higher than that of Case 1 of Scheme-III and both of the schemes

have the same spectral efficiency. Case 1 of Scheme-III outperforms this scheme by about

0.69dB at a bit-error-rate of 10 -6 and by 0.63dB at a bit-error-rate of 10 -1°.

Now let us consider the schemes proposed in [2]. For spectral efficiencies less than 2
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bits/symbol, Example 2.2 of [2] provides the best performance with a decoding complexity

of 256 additions + 102 compares + 32 distance computations per RS symbol[2]. Comparable

performance is achieved by Scheme-I with much lower decoding complexity as is shown in Sec-

tion 3. Example 2.1 of [2] with PTVTC trellis codes have a much higher complexity than that

of Scheme-I and in addition Scheme-I outperforms Example 2.1 of [2] by by 0.3dB - 1.SdB at a

bit-error-rate of 10 -6 and by 0.2dB - 1.5dB at a bit-error-rate of 10 -9. For spectral efficiencies

>_ 2 bits/symbol, Example 2.1 of [2] provides the best performance with a 16 state rate-7/0

PTVTC. The complexity of this case is 146.29 additions + 105.14 comparisons + 27.43 distance

computations per RS symbol. Scheme-III has a much lower complexity as compared to this one

and has comparable performance. However, what is not reflected in the complexity calculations

is the hardware complexity involved in implementing the decoder of the PTVTC code. The

decoder has to change periodically to decode the information bits which essentially would be

undesirable for high speed applications.

Schemes proposed in [3] use multidimensional trellis codes as the inner codes. The scheme

shown in Figure 4 of [3] with 8 states gives the best performance for spectral efficiencies less

than 2 bits/symbol. Scheme-I gives slightly better performance with a decoding complexity

which is approximately 2 - 2.5 times less than that o£ Figure 4 of [3]. Figure 3 of [3] gives

the best performance for spectral efficiencies _ 2 bits/symbol. An equivalent code as this one

can be constructed by replacing A0 and A1 in Scheme-I by A0 = A((3,3, l) • (3,3,1) • (3,3,1))

and A1 = A((3, 1, 3) • (3,3,1) • (3,3,1)) respectively. Scheme-II and Scheme-III give us better

performance than Figure 3 of [3] at the cost of slightly higher decoding complexity. Scheme-

II and Scheme-III have comparable performances, however Scheme-II gives us higher spectral

efficiencies at the cost of slightly increased decoding complexity.

V. Conclusion

Nested concatenated coded 8-PSK modulation schemes were proposed to achieve good error

performance, large coding gains, and high spectral efficiency with reduced decoding complex-

ity. In the concatenation, Reed-Solomon (RS) codes, including the NASA standard (255,223)

RS code, as the outer codes and multidimensional trellis 8-PSK codes were used as the in-

ner codes. Three schemes with varying decoding complexity and performance were proposed.

15



Upper bounds on the bit-error-performance of these schemeswere derived. Analytical and

simulation results showedthat theseschemesperform extremely well and achieveimpressive

coding gains over uncoded referencesystem in the bit-error-rate range of 10-3 to 10-9. In

addition, these codesoutperform the codesin [2], [3] and [4] both in terms of coding gain

and decoding complexity. The good performance of the proposedschemeswith reduced

decoding complexity makes them excellent choicesfor the new NASA bandwidth ei_icient

coding standard for high-speedsatellite data communications.

At this point, we would like to point out that the selection of the codes which achieve

better performance than the existing codesin literature is not totally adhoc. RS codesform

an excellent choiceas the outer codesin a single-levelconcatenation for construction of high

coding gain, low complexity and high rate codesbecauseof their high rate and high error

correcting capability. Low complexity algorithms now exist for hard-decision decoding of these

codes which make these codes an extremely attractive choice as the outer codes. This leaves

the question of designing the inner codes. A major point to be noted is that in single-level

concatenation systems what matters most is the performance of the inner code at low SNR.

For example, if the NASA standard code is used at the outer code, then the overall bit error

performance reaches the range of 10 -s when the symbol error probability is 2 x 10 -2. Therefore,

the main intention should be to choose a inner code which achieves this symbol error probability

at as low a SNlZ as possible. This does not imply choosing a high coding gain code as the inner

code. High coding gain codes usually have large number of nearest neighbors. As a result,

the performance of these codes is extremely poor at low SNR. In fact, at low SNR, low coding

gain codes with small number of nearest neighbors perform better than these high coding gain

codes. However low coding gains, low complexity and small number of nearest neighbors are

not the only points of consideration. What is also important is the rate of the inner code. It

is important that the inner code should have high rate while maintaining good performance so

that after the rate reduction due to the RS code the overall rate is still high. This tantamounts

to choosing low dimension codes as the inner codes.

For high speed applications, decoding complexity along with performance plays the

most important role and as such the main emphasis in this paper has been to design high rate

modulation codes with low decoding complexity, while maintaining performance. Most
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of the proposed codes outperform the codes available in literature both in terms of decoding

complexity and performance and form very attractive choices for the new NASA bandwidth

efficient coding standard for high-speed satellite data communication applications.
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Appendix A

All the three schemes proposed use inner codes constructed using two-level concatenation.

The performance of the inner code is measured in terms of block-error-probability, where a

block refers to the number of bits put out by the inner code decoder at each decoding time

instant. The block is said to be in error if at least one of the decoded bits in the block is in

error. Let [A0/hl] denote the set of all coset representatives in the partition A0/A1. Each block

of the inner code can be written in the form c + A1, where c E [Ao/At] and At E A_. Let _ + A_

denote the decoded estimate of the block. Then prob (block error) = prob ( fi + A1 # c + At ).

As per the decoding strategy adopted, c is estimated first and then A1. Hence

prob (block error) = prob ((_ _ c) or (A1 # A118 = c))

_< prob (_ # c) + prob (A, -fi Aa[fi = c)

prob ()_1 _ AI[_ = c) can be calculated using results of [13]. Recall, that the convolutional

codes used in the construction of the inner codes are good branch-distance codes. Let B(X)

denote the branch-distance generating function of the convolutional code. Hence, in general

B(X) can be written in the following form:

OO

S(X)=
b=Bfree

where Nb denotes the number of non-zero paths in the convolutional code with branch-distance

b.

Consider the first stage of decoding, i.e., the convolutional code decoding. Let Pb denote

the probability that the convolutional code decoder selects a path which is different from the

correct path in b branches. Using B(X), Pb, laws of expectation and arguments similar to that

stated in [16,pg. 327 ] it follows that
oO

bPb
b=Btre,

represents the expected number of branches in error at each decoding time instant of the

convolutional code decoder. Hence

prob (c # _}) _< E_'=sr,., bPb
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Note that in general Pb is of the form N'bQ (db/2cr) where Nb is the average number of nearest

neighbors associated with paths at Euclidean distance of db from any given sequence and _r2 is

the noise variance.

If p denotes an upper bound on the block-error-probability of the inner code, then

oo

b=Bfree

Ideal interleaving and de-interleaving will be assumed between the outer code and inner

code. This will ensure that the error in the individual RS symbols over the length of the KS

code (255 symbols) are independent.

In Scheme-I, two symbols of the inner code form one symbol of the RS code ( since the RS

code is over GF(2 s) ). Ideal interleaving and de-interleaving would ensure that the errors in

these two blocks are independent. Hence the symbol error probability of the RS code, p,, can

be upper bounded by p, = 1 - (1 -p)= _ 2p for p sufficiently small. For Scheme-II, two symbols

of the RS code form one block of the inner code. p can be taken to be an upper bound on the

symbol error probability of the RS code. Hence p, < p. For Scheme-III, four symbols of the RS

code form one block of the inner code. p can be taken to be an upper bound on the symbol

error probability of the RS code. Hence p_ < p

Using the upper bounds on the symbol error probability of the ttS code, the bit-error-rate

Pb(e) of the entire concatenated scheme can be upper bounded by [17]

Pb(e) <_ din,.. (p,)i(l_p,)lv-i + _ i (p,)i(1 _p,)N-i /(2N)

\ t+ 1 drain + 1

where N denotes the length of the RS code ( 255 in this case ), dmi= denotes the minimum

Hamming distance of the RS code and t the error correcting capability of the RS code.
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Appendix B

In this appendix, we will derive an upper bound on the block-error-probability of the inner

code of Scheme-I, using notation and results developed in Appendix A.

At each time instant the 2 output bits of the 1/2 rate code select one of the 4 possible coset

representatives. Pb(e) depends on the particular mapping used between the output bits of the

convolutional code and the coset representatives. Let ¢ denote this mapping and let (vl,v_)

denote the two output bits of the 1/2 rate encoder, where

(vl(D), v2(D)) = u(D) (1 + D_,D)

and u(D) is the input sequence.

The following mapping ¢(vl,v2) was used, both for simulation purposes, as well as for

bound calculations: ¢(0,0) _ (0,0) • (0,0) • (0,0), ¢(0,1) ----* (1,1) * (0,0) • (0,0),

¢(1,0)----, (0,0). (0,1), (0,0), ¢(1,1) ----,(1,1) • (0,1) • (0,0).

Due to the additive noise, the sequence of coset representatives c is decoded into c + e (since

the mapping ¢ is linear), where e ( the error path ) is a non-zero code sequence specified by

the convolutional code branch-distance spectrum. Let code sequence e be of length p branches

and be represented by the following sequence of coset representatives :

e = (el,e2, "-" ep)

where each e_ for 1 < i < p is one of the coset representatives mentioned above. Let the coset

representative on the correct path c corresponding to the time instant of e_ be cl. Each of the

error path cosets cl + e_ has a certain squared Euclidean distance from the correct coset c_.

Then
P

d_(c+ e, c) = Z d_(c' + _,,c,)
i=1

where d2(c + e, c) denotes the squared Euclidean distance between the decoded sequence and

the correct sequence and c_(ci + ei, ci) for 1 _< i _< p denotes the squared Euclidean distance

between corresponding cosets on the decoded coset sequence and the correct coset sequence.

Let Ne denote the number of nearest neighbors associated with a given e averaged over all
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possible c and let N,, denote the average number of nearest neighbors associated with a given

e_ averaged over all possible c_. Then

P

Ne=IlYo,
i----1

The following gives d2(c_ + e_, c_) and N_, for each el averaged over each possible c_ :

(1, 1) * (0, 0) • (0, 0) gives a squared Euclidean distance contribution of 1.172 with 2 number

of nearest neighbors. (0, 0) * (0, 1) • (0, 0) gives a squared Euclidean distance contribution of

2.0 with 4 number of nearest neighbors. (1, 1) • (0, 1) • (0, 0) gives a squared Euclidean distance

contribution of 1.172 with 2 number of nearest neighbors.

The squared distances have been calculated assuming the signal points are on a unit energy

circle. The number of nearest neighbors have been calculated using the technique proposed in

[6,101.

Using the above and results from Appendix A, the following upper bound is calculated using

the first couple of terms of the branch distance spectrum. The following uses the Q function,

where

Q(=)A exp(_X /2)dX=

prob (A_I # Allc-c) _< 6.0Q(1.414p)

Hence

prob (c #- _) _< 96.OQ(1.608p) + 512.0Q(1.781p) + 2560.OQ(1.939p)

+ 12288.0Q(2.084p) + 57344.0Q(2.220p)

p _< 96.0Q(1.608p) +512.0Q(1.781p) +2560.0Q(1.939p)

+ 12288.0Q(2.084p) + 57344.0Q(2.220p) + 6.0Q(1.414p)

where p = rlEb/No and r/is the spectral efficiency of the overall concatenated scheme.
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Appendix C

Using the same technique as in Appendix B the following have been derived :

prob (;1 # = c) < 12S.0Q(1.432p)+ 91.0Q(1.414p)

prob ()C1 # ,_xIc = c) has been derived using multi-stage decoding for A1 which forms an upper

bound on the optimum soft-decision decoding of A1.

prob (c # _) _< 64.0Q(1.326p) + 256.0Q(1.432p) + 256.0Q(1.531p)

+ 224.0Q(1.371p) + 448.0Q(1.474p)

+ 4032.0Q(1.661p) + 16128.0Q(1.747p) + 16128.0Q(1.829p)

+ 1536.0Q(1.624p) + 9216.0Q(1.712p) + 18432.0Q(1.795p)

+ 12288.0Q(1.875p) + 2352.0Q(1.697p) + 4704.0Q(1.781p)

+ 28672.0Q(1.875p) + 229376.0Q(1.952p) + 688128.0Q(2.025p)

+ 917504.0Q(2.096p) + 458752.0Q(2.165p)+ 78848.0Q(1.907p)

+ 47308S.OQ(1.982p) + 946176.0Q(2.055p) + 630784.0Q(2.125p)

+ 75264.0Q(1.939p) + 301056.0Q(2.013p) + 301056.0Q(2.084p)

p

Hence

_< 64.0Q(1.326p) + 256.0Q(1.432p) + 256.0Q(1.531p)

+ 224.0Q(1.371p) + 44S.0Q(1.474p)

+ 4032.0Q(1.661p) + 16128.OQ(1.747p) + 16128.0Q(1.S29p)

+ 1536.0Q(1.624p) + 9216.0Q(1.712p) + 18432.0Q(1.795p)

+ 12288.OQ(1.875p) + 2352.OQ(1.697p) + 47o4.oQ(1.781p)

+ 28672.OQ(1.875p) + 229376.OQ(1.952p) + 688128.OQ(2.O25p)

+ 9175o4.oQ(2.O96p) + 458752.OQ(2.165p) + 78848.OQ(1.9O7p)

+ 473o88.OQ(1.982p) + 946176.OQ(2.O55p) + 63o784.OQ(2.125p)

+ 75264.0Q(1.939p) + 301056.0Q(2.013p) + 301056.0Q(2.084p)

+ 128.OQ(1.432p) + 91.0Q(1.414p)

where p = rlEb/No and 7/is the spectral efficiency of the overall concatenated scheme.
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Appendix D

Using the same technique as in Appendix B the following are derived :

prob ()_1 :/: AI[_ = c) _< 32768.0Q(2.096p) + 435.OQ(1.414p)

prob (A, -# A,I_ = c) has been derived using multi-stage decoding for Ax which forms an

upper bound on the optimum soft-decisiondecoding of AI.

prob (c # e) < 131072.0Q(2.025p) + 524288.0Q(2.096p) + 524288.OQ(2.165p)

+ 94371840.0Q(2,480p) + 5.6623 x 10sQ(2.539p)

+ 1.13246 x 109Q(2.596p) + 7.54974 x 10sQ(2.651p)

Hence

p <_ 131072.0Q(2.025p) + 524288.OQ(2.096p) + 524288.OQ(2.165p)

+ 94371s40.0Q(2.4sop) + 5.6623 × 108Q(2.539p)

+ 1.13246 x 109Q(2.596p) + 7.54974 x 10SQ(2.651p)

+ 3276s.oq(2.096p)+ 435.0q(1.414p)

where p = rlEb/No and 7/is the spectral efficiency of the overall concatenated scheme.
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Table 1 Optimum Branch Distance Codes

[Rate Vt

1/2 1

1/2 2

i/2 3

1/2 4

2/3 2

2/3 4

3/4 3

0

0

¢06

66

_62

G

44

32 s

2 0 _

43)5 0 s
6 2_

24!
2 2/ s

B-free _ NB_freeZ_[D-free u ND_free*

2 1 2 1

3 1 3 1

4 1 5 1

5 2 5 1

2 4 2 3

3 5 3 1

2 11 3 3

t : Total encoder memory ( i.e., 2_ = total number of states )

t : Free branch distance

z_ : Number of codewords with branch distance B-free

n : Free Hamming distance

* : Number of codewords with Hamming distance D-free

Note : The generator polynomials have been listed in octal with the lowest degree on the left

and the highest degree on the right, e.g., (32)s = D + D 2 + D 4.
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Table 2 Performance of the concatenated TCM schemes

Scheme / Case

Scheme-I/Case 1

Scheme-I/Case 2

Scheme-II/Case 1

Scheme-II/Case 2

Scheme-III/Case 1

Scheme-III/Case 2

Scheme-III/Case 3

RS

code

used

(255,223)
(255,247)
(255,223)
(255,247)
(255,235)
(255 , 239)

(255,247)

Spectral

efficiency

(bits/

symbol)

1.749

1.938

2.0

2.214

1.966

2.0

2.066

EUNo
@

10-6

bit

error

rate

5.13dB t

5.95dB t

6.20dB t

6.91dB t

5.88dB t

5.98dB*

6.50dB t

EUNo
@

10-9

bit

error

rate

5.41dB t

6.56dB t

6.47dB t

7.44dB t

6.27dB:

6.49dB _

7.03dB:

Complexity

( no. of
states

in

inner

code )

4

4

4

4

Coding

Gain

@

lO-S

bit error

rate *

4.92dB A

4.44dB zx

4.35dB:

4.22dB:

4.60dB A

4.57dB A

4.23dB A

Coding
Gain

@

10-9

bit error

rate "

6.64dB:

5.83dB:

6.09dB:

5.69dB t

6.21dB:

6.07dB*

5.43dB _

" Coding Gain is calculated with the reference being a hypothetical uncoded PSK system of

the same rate [3].

i' Simulation

A Coding Gain calculated from simulation

* SNR values calculated using the simulation values of the inner code
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An 8-PSK signal constellation and its signal labels
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Figure 2 A trellis coded m X 2-dimensional 8PSK encoder
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